
Sorting Algorithms
Part 1

Anton Gerdelan <gerdela@scss.tcd.ie>

Value on y axis, index on x axis. From Sedgewick "Algorithms in C++"

mailto:gerdela@scss.tcd.ie

Overview and Rules
• We talk about sorting files of records.

• Records may be quite complex, so sort actually operates on simpler keys.

• Sorts re-arrange sets of keys

• e.g. numerical or alphabetical order.

• This gives us the elegant representation: 
 
input instance S = {9, 2, 3, 8} 
 
sorting algorithm goes to work in here 
 
output permutation S' = {2, 3, 8, 9}

• We can .: use arrays of integers to represent keys in our demos.

• Can swap sorting functions to compare on same arrays.

• Consider an indirect sort to avoid shuffling v. large data (sort array of pointers instead).

Stability
• A sorting algorithm is stable if it preserves original

order of equal-value keys

• e.g. records show student names originally in
alphabetical order. but keys are based on grades.

• Elementary sorts are usually stable.

• Sophisticated sorts are usually unstable.

• Can modify key. Turns out to be quite tricky or
expensive.

Elementary Sorts
• We will start with simple 'elementary sorts'

• sometimes these are the best choice for bigger
problems

• start with simple problems to learn general ideas

• Try to build functions that implement all of these: good
practise

• Build a table comparing time and space complexity

• Know special pros and cons of each beyond complexity

Elementary Sorts
• Properties

• Usually take N^2 steps to sort N items .: bad on big data sets

• Simple to implement

• May actually be quicker on mostly-sorted data

• Selection sort

• Insertion sort

• Bubble sort

• Shell sort - can be a great choice on random data

Selection Sort Algorithm
• "select the smallest remaining element"

• Given set S of n values

• Loop over array from left to right (array[0] to array[n-2])

• Loop over rest of array ([current_index] to [n-1]) looking for
smallest value

• Swap array[current_index] and array[min_index]

• Blackboard walk-through here

• Live coding demo here…

Selection Sort
• Ease of implementation?

• Time complexity avg., best, worst O(…)?

• Space complexity base O(…)? and auxiliary (amount of extra
space used whilst working).

• Why is this stable? hint: one operation

• Bad for?

• Good for?

• consider that every item is moved max once.

Aside on Unix-style
programs

• Why are we talking about sorting records within files?

• It usually is a file with a series of lines as records

• text list of strings

• csv or spreadsheet — maybe grades are the key

• If your print the output to the console e.g. printf

• redirect printed output to a new file

• ./mysort input.csv > output.csv

• can also chain wee programs together with pipes |

• ./mysoft input.csv | ./mycsv2json > output.json

Insertion Sort Algorithm
• "insert new card into already sorted hand of cards"

• start at left of array and loop once to right

• check new card to the right of current card

• if it's smaller than current card swap them over

• this should loop all the way back to the left e.g.  
 
S = {2,3,4,5,1}

• imagine our current card is the 5

• Idea how to code this?

for (int pass = 0; pass < length - 1; pass++) {
 for (int i = pass + 1; i > 0; i--) {
 if (array[i - 1] > array[i]) {
 int temp = array[i];
 array[i] = array[i - 1];
 array[i - 1] = temp;
 } else {
 break;
 }
 }
}

• Loop over array length -1
• Nested loop goes backwards from next element

to [1]
• Compare current and next elements
• If next is smaller, do a swap and continue left
• Otherwise break and continue main loop right

Insertion Sort

• Time and space complexity?

• Other advantages

• one at a time input

• implementation simple

Bubble Sort Algorithm
• sorted = false

• while (sorted == false)

• sorted = true

• loop over data

• if (next < current)

• swap(current, next)

• sorted = false

Bubble Sort
• Time and space complexity? Worst, average, best?

• Advantages:

• Code is simple

• Can stop early if numbers already sorted

• No other sorting algorithm does this

• Can do one run to check before calling complex sorting algorithm

• "Stable"

• *Sedgewick has a different algorithm called Bubble Sort

• Computer scientists have very negative things to say about Bubble Sort's worst
case performance vs Insertion Sort.

Summary - Elementary
Sorting Algorithms

• Very simple to implement. Also interchangeable.
Some useful properties.

• O(n^2) worst case time

• May not play well with cache - try them with a timer

• O(1) auxiliary memory (1 variable for swapping)

• Stable

