Sorting Algorithms
Part 1

Anton Gerdelan <gerdela@scss.tcd.ie>

s - a ’ / " =
B = . B
J L ; - J =
' b .) .
7 : .-- 2 =z
H [4
E - 4 '. 2
2 l. .. 2 =
=" . .f s a "
= .l -.. . . / 5 a
K] g 2 - " " » f . @
Figure 8.4 Insertion sorting a random permutation.

Value on y axis, index on x axis. From Sedgewick "Algorithms in C++"

mailto:gerdela@scss.tcd.ie

Overview and Rules

We talk about sorting files of records.
Records may be quite complex, so sort actually operates on simpler keys.

Sorts re-arrange sets of keys

* e.g. numerical or alphabetical order.
This gives us the elegant representation:
input instance S = {9, 2, 3, 8}
sorting algorithm goes to work in here
output permutation S' = {2, 3, 8, 9}
We can .: use arrays of integers to represent keys in our demos.
Can swap sorting functions to compare on same arrays.

Consider an indirect sort to avoid shuffling v. large data (sort array of pointers instead).

Stability

A sorting algorithm is stable if it preserves original
order of equal-value keys

e.g. records show student names originally in
alphabetical order. but keys are based on grades.

Elementary sorts are usually stable.
Sophisticated sorts are usually unstable.

Can modity key. Turns out to be quite tricky or
expensive.

Elementary Sorts

 We will start with simple ‘elementary sorts'

e sometimes these are the best choice for bigger
problems

e start with simple problems to learn general ideas

e Try to build functions that implement all of these: good
practise

 Build a table comparing time and space complexity

 Know special pros and cons of each beyond complexity

Elementary Sorts

Properties

« Usually take NA2 steps to sort N items .: bad on big data sets

o Simple to implement

 May actually be quicker on mostly-sorted data
Selection sort

Insertion sort

Bubble sort

Shell sort - can be a great choice on random data

Selection Sort Algorithm

* 'select the smallest remaining element’
* (Given set S of nvalues
* Loop over array from left to right (array[0] to array[n-2])

 Loop over rest of array ([current_index] to [n-1]) looking for
smallest value

« Swap array[current index] and array[min index]
* Blackboard walk-through here

* Live coding demo here...

Selection Sort

Ease of implementation?
Time complexity avg., best, worst O(...)?

Space complexity base O(...)7 and auxiliary (amount of extra
space used whilst working).

Why is this stable? hint: one operation
Bad for?

Good for?

e consider that every item iIs moved max once.

Aside on Unix-style
orograms

Why are we talking about sorting records within files?
It usually is a file with a series of lines as records
 text list of strings
e CSV Or spreadsheet — maybe grades are the key
If your print the output to the console e.g. printf
redirect printed output to a new file

./mysort input.csv > output.csv

can also chain wee programs together with pipes |

./mysoft input.csv | ./mycsv2json > output.json

Insertion Sort Algorithm

e 'insert new card into already sorted hand of cards
o start at left of array and loop once to right
e check new card to the right of current card
e |f it's smaller than current card swap them over
o this should loop all the way back to the left e.q.
S=1{2,3,4,51}
e Imagine our current card is the 5

 |dea how to code this?

for (int pass = 0; pass < length - 1; pass++) {
for (int 1 = pass + 1; 1 > 0; i--) {
if (array[i - 1] > array[i]) {

int temp = arrayl([i];
array[i] = array[1i - 1];
array[i - 1] = temp;

} else {
break;

* Loop over array length -1

* Nested loop goes backwards from next element
to [1
 Compare current and next elements

* |t next is smaller, do a swap and continue left
* Otherwise break and continue main loop right

INnsertion Sort

* [ime and space complexity?
* Other advantages
* one at a time Input

* Implementation simple

Bubble Sort Algorithm

e sorted = false

* while (sorted == false)

* sorted = true
* |loop over data
e if (next < current)
* swap(current, next)

e sorted = false

Bubble Sort

* Time and space complexity”? Worst, average, best?
e Advantages:
« Code is simple
e Can stop early if numbers already sorted
* No other sorting algorithm does this
e Can do one run to check before calling complex sorting algorithm
« 'Stable’
e *Sedgewick has a different algorithm called Bubble Sort

o Computer scientists have very negative things to say about Bubble Sort's worst
case performance vs Insertion Sort.

Summary - Elementary
Sorting Algorithms

Very simple to implement. Also interchangeable.
Some useful properties.

O(nA2) worst case time
 May not play well with cache - try them with a timer

O(1) auxiliary memory (1 variable for swapping)

Stable

